Correlazione spuria


Cosè la correlazione spuria

Nelle statistiche, una correlazione spuria, o spuriezza, si riferisce a una connessione tra due variabili che sembra causale ma non lo è. Le relazioni spurie hanno spesso laspetto di una variabile che ne influenza unaltra. Questa correlazione spuria è spesso causata da un terzo fattore che non è evidente al momento dellesame, a volte chiamato fattore di confusione.

Conclusioni chiave

  • Correlazione spuria, o spuriezza, è quando due fattori sembrano casualmente correlati ma non lo sono.
  • La comparsa di una relazione causale è spesso dovuta a movimenti simili su un grafico che risulta essere casuale o causato da un terzo fattore “confondente”.
  • La correlazione spuria può spesso essere causata da campioni di piccole dimensioni o endpoint arbitrari.

Come funziona la correlazione spuria

Quando due variabili casuali si seguono strettamente su un grafico, è facile sospettare una correlazione, o una relazione tra i due fattori, dove un il cambiamento influisce sullaltro. Mettendo da parte la “causalità”, un altro argomento, questa osservazione può portare il lettore del grafico a credere che il movimento della variabile A sia collegato al movimento della variabile B o viceversa. ma a volte, a un esame statistico più attento, i movimenti allineati sono casuali o causati da un terzo fattore che influenza i primi due. Questa è una correlazione spuria. La ricerca condotta con campioni di piccole dimensioni o endpoint arbitrari è una particolarità suscettibile di falsità.

Esempio di correlazioni spurie

Non è troppo difficile scoprire correlazioni interessanti. Tuttavia, molti risulteranno falsi. Per le specie maschili di Wall Street, due popolari correlazioni spurie coinvolgono donne e sport. Nata negli anni 20 è la teoria della lunghezza della gonna, secondo la quale le lunghezze della gonna e la direzione del mercato azionario sono correlate. Se le lunghezze della gonna sono lunghe, significa che il mercato azionario sta diminuendo; se sono brevi, il mercato sta salendo. Verso la fine di gennaio si parla del cosiddetto indicatore del Super Bowl, il quale suggerisce che una vittoria del team AFC probabilmente significa che il mercato azionario scenderà nel prossimo anno, mentre una vittoria del team NFC fa presagire un aumento del mercato. Dal 1966, lindicatore ha avuto un tasso di precisione dell80%. È un pezzo di conversazione divertente, ma probabilmente non qualcosa che un consulente finanziario serio consiglierebbe come strategia di investimento per i clienti.

Ecco alcuni altri esempi di correlazioni spurie comuni:

  • Gli annegamenti aumentano quando aumentano le vendite di gelato. Può sembrare che laumento delle vendite di gelato provochi più annegamenti, ma in realtà laumento del caldo può indurre più persone a nuotare, oltre a comprare più gelato.
  • Il tasso di omicidi negli Stati Uniti dal 2006 al 2011 è sceso a lo stesso tasso di utilizzo di Microsoft Internet Explorer.
  • I dirigenti che dicono per favore e grazie più spesso godono di migliori prestazioni di condivisione.
  • Le persone che indossano labbigliamento del team Oakland Raiders hanno maggiori probabilità di commettere crimini .

Come individuare correlazioni spurie

Gli statistici e altri scienziati che analizzano i dati devono essere alla ricerca di relazioni spurie tutto il tempo. Esistono numerosi metodi che utilizzano, tra cui:

  • Garantire un campione rappresentativo appropriato.
  • Ottenere una dimensione del campione adeguata.
  • Diffidare degli endpoint arbitrari.
  • Controllo del maggior numero possibile di variabili esterne.
  • Utilizzo di unipotesi nulla e verifica di un valore p forte.

Lascia un commento

Il tuo indirizzo email non sarà pubblicato. I campi obbligatori sono contrassegnati *